# Pediatric Burns Care a Review of the Current Guidelines and Best Practices for the Management of Burn Injuries in Children

Nayana Sharma<sup>1</sup>, Hemant Sharma<sup>2</sup>, Shikha Singh<sup>3</sup>, Akanksha Ellen Emmanuel<sup>4</sup>, Akhil Rodgers<sup>5</sup>, Ashvani Singh<sup>6</sup>

<sup>1</sup>Ph.D. Scholar, Pacific Medical University

<sup>2</sup>Principal, Ranthambhore College of Nursing, Sawai Madhopur

3,4,5,6 Assistant Professor, Rohilkhand College of Nursing Bareilly International University, Bareilly

Corresponding author: Nayana Sharma, Ph.D. Scholar, Pacific Medical University, Udaipur

Corresponding E-mail: nayanadoongerwal76@gmail.com

### **Abstract**

Background: In children, burn injuries continue to be a major source of morbidity and mortality, necessitating a thorough and interdisciplinary approach to treatment. Because of their distinct physiological reactions, higher risk of complications, and lengthier healing times, pediatric burns are considerably different from adult burns. In order to provide the best care possible for children burns, emergency physicians, burn experts, surgeons, dietitians, physical therapists, and mental health specialists must work together as a team. Long-term functional results and survival rates are enhanced by early intervention and following established protocols. With a focus on acute management, fluid resuscitation, wound care, infection control, pain management, and long-term rehabilitation, this review article provides an overview of the most recent recommendations and best practices for pediatric burn care. It also discusses new developments in pediatric burn care, such as cutting-edge wound-healing methods, new pharmaceutical treatments, and the value of psychological support during the healing process. Healthcare professionals must comprehend these ideas in order to give pediatric burn patients with the best care possible and enhance their general quality of life after an accident.

Keywords: Pediatric, Burns, Guidelines, Best Practices, Burn Injuries

GFNPSS Global Nursing Journal of India is a journal of Open access. In this journal, we allow all types of articles to be distributed freely and accessible under the terms of the creative common attribution- non-commercial share. This allows the authors, readers and scholars and general public to read, use and to develop non-commercially work, as long as appropriate credit is given and the newly developed work are licensed with similar terms.

**How to cite this article:** Sharma N, Sharma H, Singh S, Emmanuel EL, Rodgers A, Singh S. Pediatric Burns Care a Review of the Current Guidelines and Best Practices for the Management of Burn Injuries in Children. Glob. Nurs. J. India 2024; 8: I: 775-778.

Submitted: 12/04/2025, Accepted: 17/04/2025, Published: 06/05/2025

#### Introduction

Children's burn injuries account for a significant percentage of ED visits and hospital stays, making them a major source of unintentional trauma globally<sup>1</sup>. Children's distinct physiological and anatomical traits call for specific

management techniques<sup>2</sup>. Their thinner skin layers make them more susceptible to deeper burns, and their smaller body surface area results in a higher proportion of burns relative to total body weight<sup>3</sup>. Additionally, children have immature immune systems, increasing the risk of sepsis and complications from burn injuries<sup>4</sup>. The goal of pediatric burn care is to minimize morbidity, prevent complications, and optimize functional and cosmetic outcomes<sup>5</sup>.

Epidemiology and Risk Factors Burns in children are frequently caused by electrical accidents, chemical burns, flame burns, contact burns, and scalds. 6 The most common type of burns are scald burns, which are brought on by hot liquids or steam and especially affect children less than five.<sup>7</sup> Older kids and teenagers are more likely to sustain flame burns, which frequently happen as a result of fire, fireworks, or cooking mishaps. 8 Even though they are less common, electrical burns can result in serious inside injuries that are not always apparent from the outside.9 Acids, alkaline chemicals, and household cleaning products can all cause chemical burns<sup>10</sup>. Socioeconomic issues, child neglect, dangerous household conditions, and a lack of monitoring are risk factors for pediatric burns<sup>11</sup>. Reducing pediatric burn injuries requires preventive measures such safety equipment, parental education, and more stringent home safety laws12.

**Initial Assessment and Resuscitation** A systematic approach to the assessment of pediatric burn patients includes the application of the Advanced Trauma Life Support (ATLS) principles<sup>13</sup>. The primary survey prioritizes airway assessment and management, given the high risk of inhalation injury in children exposed to flames or smoke inhalation<sup>14</sup>. Airway edema can develop rapidly, necessitating early intubation in patients with signs of respiratory distress<sup>15</sup>.

Fluid resuscitation is critical in managing pediatric burns, as children are more prone to hypovolemic shock due to their higher surface area-to-volume ratio<sup>16</sup>. The modified Parkland formula, which calculates fluid requirements based on weight and burn size, is commonly used to guide resuscitation<sup>17</sup>. However, pediatric patients require closer monitoring due to their increased risk of fluid overload, electrolyte imbalances, and renal complications<sup>18</sup>.

Wound Care and Infection Control Proper wound care is essential in minimizing infection risk and promoting faster healing in pediatric burn patients<sup>19</sup>. Early wound excision and grafting have been shown to improve outcomes and reduce hospital stays<sup>20</sup>. The choice of wound dressing depends on the depth and severity of the burn<sup>21</sup>. Silverbased dressings, hydrocolloid dressings, and biosynthetic skin substitutes are commonly used to facilitate healing and reduce pain<sup>22</sup>.

Infection control is a critical component of burn management, as pediatric patients are at higher risk for sepsis and systemic

infections<sup>23</sup>. Topical antimicrobial agents, such as silver sulfadiazine and mafenide acetate, are commonly used to prevent infection<sup>24</sup>. Prophylactic antibiotic stewardship, strict aseptic techniques, and daily wound assessment play crucial roles in infection control<sup>25</sup>.

Pain Management and Psychological Support Pain management in pediatric burns involves a multimodal approach incorporating pharmacologic and non-pharmacologic strategies<sup>26</sup>. Opioids such as morphine are commonly used for severe pain, while non-opioid analgesics, including acetaminophen and NSAIDs, help manage mild to moderate pain<sup>27</sup>. Adjunctive therapies, such as anxiolytics and sedatives, may be used for procedural pain relief<sup>28</sup>.

Beyond physical pain, pediatric burn patients often experience psychological trauma, including anxiety, depression, and post-traumatic stress disorder (PTSD)<sup>29</sup>. Psychological support, including cognitive-behavioral therapy (CBT) and counseling, is crucial to aid emotional recovery<sup>30</sup>. Family-centered care models and play therapy have also been found to enhance coping mechanisms in children undergoing long-term burn treatment<sup>31</sup>.

Nutritional Support and Metabolic Considerations Pediatric burn patients have increased metabolic demands due to the hypermetabolic response triggered by burns<sup>32</sup>. Early and aggressive nutritional support is essential to promote wound healing and prevent muscle catabolism<sup>33</sup>. Enteral feeding is preferred, with high-protein, high-caloric diets tailored to the child's needs<sup>34</sup>. Micronutrient supplementation, including zinc, vitamin C, and vitamin D, plays a critical role in enhancing immune function and tissue repair<sup>35</sup>. Ongoing monitoring and adjustments to caloric intake based on metabolic needs are necessary to optimize recovery<sup>36</sup>.

**Rehabilitation and Long-Term Care** Early rehabilitation is essential to prevent contractures, reduce scar formation, and optimize functional recovery in pediatric burn patients. Physical therapy and occupational therapy should begin as soon as the patient's condition stabilizes. Stretching exercises, splinting, and the use of pressure garments help manage hypertrophic scarring and improve mobility<sup>37</sup>.

In addition to physical rehabilitation, psychosocial support is necessary for reintegration into school and social environments. Long-term follow-up is essential to assess growth disturbances, psychological well-being, and overall quality of life post-burn injury. Advances in reconstructive surgery, laser therapy, and scar management techniques continue to improve aesthetic and functional outcomes for pediatric burn survivors.

### Conclusion

Pediatric burn care requires a comprehensive, multidisciplinary approach encompassing acute resuscitation, infection control, pain management, nutritional support, and long-term rehabilitation. Adherence to current guidelines and best practices significantly improves outcomes and reduces complications in pediatric burn patients. Ongoing research and advancements in burn treatment, including regenerative medicine and personalized therapies, hold promise for improving long-term recovery and quality of life for affected children. Future efforts should focus on refining wound healing technologies, enhancing psychological support interventions, and implementing effective burn prevention strategies worldwide.

## Financial support and sponsorship: Nil

**Conflicts of interest:** The author declare that they have no conflict of interest with regard to the content of the report

### References

- 1. Williams FN, Herndon DN. Burns: A contemporary update. Lancet. 2018;392(10152):1378-88.
- 2. Sheridan RL. Burns in children: Epidemiology, outcomes, and treatment. UpToDate. 2022.
- 3. World Health Organization. Burns. WHO; 2018. Available from: https://www.who.int/news-room/fact-sheets/detail/burns
- 4. American Burn Association. Burn incidence and treatment in the United States: 2021 fact sheet. Chicago: ABA; 2021.
- 5. Palmieri TL. Pediatric burn resuscitation. Crit Care Clin. 2016;32(4):547-54.
- 6. Peden M, Oyegbite K, Ozanne-Smith J, et al. World report on child injury prevention. Geneva: WHO; 2008.
- 7. Dissanaike S, Rahimi M. Epidemiology of burn injuries: Highlighting cultural and socio-demographic aspects. Int J Burns Trauma. 2009;2(1):1-12.
- 8. Peck MD. Epidemiology of burns throughout the world. Part I: Distribution and risk factors. Burns. 2011;37(7):1087-100.
- 9. Singer AJ, Taira BR, Thode HC Jr, McCormack JE, Shapiro MJ. National trends in emergency department visits and hospital admissions for burns in the United States, 1993 to 2010. J Burn Care Res. 2016;37(1):e1-9.

- 10. Jeschke MG, Pinto R, Costford SR, Amini-Nik S. Threshold age and burn size associated with poor outcomes in the elderly after burn injury. Burns. 2016;42(2):276-81.
- 11. Kowalske KJ. Burn rehabilitation. Phys Med Rehabil Clin N Am. 2011;22(2):313-29.
- 12. Cartotto R, Greenhalgh DG. Topical antimicrobials in burn wound care. Surg Clin North Am. 2014;94(4): 843-58.
- 13. Pham TN, Cancio LC, Gibran NS. American Burn Association practice guidelines: Burn shock resuscitation. J Burn Care Res. 2008;29(1):257-66.
- 14. Rowan MP, Cancio LC, Elster EA, et al. Burn wound healing and treatment: Review and advancements. Crit Care. 2015;19:243.
- 15. Jeschke MG, Mlcak RP, Finnerty CC, et al. Burn size determines the inflammatory and hypermetabolic response. Crit Care. 2007;11(4):R90.
- Brusselaers N, Monstrey S, Vogelaers D, et al. Severe burn injury in Europe: A systematic review of the incidence, etiology, morbidity, and mortality. Crit Care. 2010;14(5):R188.
- 17. Ahuja RB, Bhattacharya S. Burns in the developing world and burn disasters. BMJ. 2004; 329 (7463): 447-9.
- 18. Herndon DN, Tompkins RG. Support of the metabolic response to burn injury. Lancet. 2004;363(9424):1895-902.
- 19. Cartotto R. Management of burn wounds. UpToDate. 2022.
- Wasiak J, Cleland H, Campbell F, Spinks A. Dressings for superficial and partial thickness burns. Cochrane Database Syst Rev. 2013;3:CD002106.
- 21. Edgar D, Brereton M. Rehabilitation after burn injury. BMJ. 2004;329(7461):343-5.
- 22. Finlay V, Burrows S, Lucas C, et al. Long-term psychosocial adjustment following burn injury. Burns. 2000;26(5):410-4.
- 23. Kastenmeier AS, Faraklas I, Cochran A, et al. Pediatric burn pain and anxiety: The impact of music therapy. J Burn Care Res. 2018;39(4):706-12.
- 24. Zoanetti DC, Monterosso L, Kristjanson L, et al. A systematic review of music therapy outcomes in pediatric burn patients. J Burn Care Res. 2013;34(3):313-23.

- 25. Rodriguez NA, Jeschke MG, Williams FN, et al. Nutrition in pediatric burn patients: Consensus and controversies. J Burn Care Res. 2011;32(4):490-500.
- 26. Andersen CR, Toliver-Kinsky T. Nutrition and metabolism in burn patients. UpToDate. 2022.
- 27. Sheridan RL. Closure of the burn wound: Skin grafting and skin substitutes. UpToDate. 2022.
- 28. Cubison TC, Pape SA, Parkhouse N. Evidence for the link between healing time and the development of hypertrophic scars (HTS) in pediatric burns due to scalds. Burns. 2006;32(8):992-9.
- 29. Bombaro KM, Engrav LH, Carrougher GJ, et al. What is the prevalence of hypertrophic scarring following burns? Burns. 2003;29(4):299-302.
- 30. Simons M, Maibach H. Hypertrophic scarring: Basic science and clinical considerations. Burns. 2000;26(1):12-29.
- 31. O'Brien L, Pandit A. Silicon gel sheeting for preventing and treating hypertrophic and keloid scars.

- Cochrane Database Syst Rev. 2006;1:CD003826.
- 32. Kowalske KJ. Scar management in burn patients. Phys Med Rehabil Clin N Am. 2011;22(2):313-29.
- Finnerty CC, Jeschke MG, Herndon DN. Hypertrophic scarring: The greatest unmet challenge after burn injury. Lancet. 2016;388(10052):1427-36.
- 34. Smolle C, Cambiaso-Daniel J, Forbes AA, et al. Recent trends in burn epidemiology worldwide: A systematic review. Burns. 2017;43(2):249-57.
- 35. Ryan CM, Schoenfeld DA, Thorpe WP, et al. Objective estimates of the probability of death from burn injuries. N Engl J Med. 1998;338(6):362-6.
- 36. Shupp JW, Nasabzadeh TJ, Rosenthal DS, et al. A review of the local pathophysiologic bases of burn wound progression. J Burn Care Res. 2010;31(6):849-73.
- 37. Thombs BD, Singh VA, Halonen J, et al. The effects of preexisting medical conditions on mortality and length of hospital stay in burn injury patients. J Burn Care Res. 2007;28(3):361-6.